Rising Algebra/Algebra Honors Summer Packet

Mark Twain Middle School Summer 2019

Name: \qquad
All rising Algebra or Algebra Honors students must complete this packet over the summer. Students entering Algebra or Algebra Honors must have mastered the skills contained in this packet prior to the start of the 20192020 school year. There are videos available on our Google Video Lesson site for students who need assistance completing this assignment. Please use the QR code below to access the Video Lessons. The videos will be under the Summer Packet tab. You will need your FCPS email to access the videos.

Scan the QR code to access thi Summer Packet Video Lesson.

Examples:

Fractions, Decimals, \& Percents

Change a...	Toa...	Toa...
Fraction	Decimal	Percent
	Divide the numerator by the denominator. Example: $1 /$ would be $3 \div 4=0.75$	Change the fraction to a decimal then multiply the decimal by 100 . Example: $5 / 4=0.75$ Then $0.75 \times 100=75 \%$
Change a...	Toa...	Toa...
Decimal	Percent	Fraction
	Multiply the decimal by 100 . Example: To change 0.382 to a percent just multiply by 100 . $0.382 \times 100=38.2 \%$	If you can read the decimal properly you can write it as a fraction. Then simplify the fraction Example: 0.875 reads 875 thousandths - as a fraction that would be $\frac{875}{1000}$ - which reads exactly the same. Now simplify your answer and you are finished $\frac{875}{1000}=\frac{7}{8}$.
Change a...	Toa...	Toa...
Percent	Decimal	Fraction
	Divide the percent by 100. Example: 75% would be $75+100=0.75$ So $75 \%=0.75$	Write the percent as a fraction over 100 then simplify the fraction. Example: 75% would be ${ }^{\frac{75}{100}}$. Simplified ${ }^{\frac{75}{100}}=1 / 4$

Scientific Notation

Example 1
 Express each number in standard form.

a. 6.32×10^{5}

$$
\begin{aligned}
6.32 \times 10^{5} & =6.32 \times 100,000 \\
& =632,000
\end{aligned}
$$

$10^{5}=100,000$
Move the decimal point 5 places to the right because it is a POSITIVE exponent.
$10^{-6}=0.000001$
Move the decimal point 6 places to the left because it is a NEGATIVE exponent.

Bxample 2 Express each number in scientific notation.

a. $62,000,000$

To write in scientific notation, place the decimal point after the first nonzero digit, then
find the power of 10 .

$$
\begin{aligned}
\text { U2,000,000 } & =6.2 \times 10,000,000 \\
& =6.2 \times 10^{7}
\end{aligned}
$$

The decimal point moves 7 places.
The exponent is positive because the original number was greater
b. 0.00025
$0.00025=2.5 \times 0.0001 \quad$ The decimal point moves 4 places
cter
The exponent is negative because the original number was less than 1.

1. Write in the symbol that makes the statement true, < or >.
a) ${ }^{0.09} \square_{\frac{7}{8}}^{7}$
b) $6 \% \square 0.09$
c) ${ }_{\overline{8}}^{7} \square^{8.0 \times 10^{-3}}$
d) $8.0 \times 10^{-3} \square 6 \%$
2. Order the following numbers in descending order. Next, plot them on the number line below.
0.25
$2 / 5$
2.5×10^{-3}
2.5\%

Answer:

3. Order the following numbers in ascending order and mark on a number line.
4^{0}
0.57
6/7
1.23×10^{-2}
72%

Answer: \qquad

4. Which list is in ascending order?
A. ${ }^{3}, 30 \%, 3.7 \times 10^{-2}$
B. $\quad{ }_{\overline{8}}^{3}, 30 \%, 3.7 \times 10^{-2}, 0.25$
C. $\quad 3.7 \times 10^{-2}, 0.25,30 \%, \frac{3}{8}$

Translate the following to algebraic expressions:

D. $\quad 30 \%, 3.7 \times 10^{-2}, \frac{3}{8}, 0.25$

Translating Expressions and Equations
5. 8 less than the product of 5 and a number.
6. The product of a number and five, subtracted from 8 .
7. The difference of one third of a given number and nine
8. Twice the quantity of a number added to five.

Write an equation for the following:

9. The total cost of a taxi ride is a flat $\$ 3$ plus $\$ 2$ per mile.
10. Write a sentence that could be represented by the following equation:

$$
y=4 x+10
$$

$\begin{array}{ll}\text { G } & \text { First, solve the operations inside of } \\ \text { grouping symbols. }\end{array}$, | Example: |
| :--- |
| $8-4 \div 2+3 \bullet 5$ |
| $8-2+3 \bullet 5$ |
| $8-2+15$ |
| $6+15$ |
| 21 |

4.

$\left[131.625-(6.4+5.1)^{2}+9 / 8\right]^{2}$
Practice: Simplify the following expressions.

1. $12 \div 3 \cdot 5-4^{2}$
2. $\left[-28 \cdot(3-5)+-3^{4}\right] \div(-5)^{2}$

$$
\text { 5. } \frac{1}{4} \quad \underline{5}+\left(\frac{3}{2}\right)^{3}
$$

3. $\frac{[8(3+4)-2 \cdot 8]}{5-3}$

Determine square roots

1. $\sqrt{49}$
2. $\sqrt{100}$
3. $\sqrt{169}$
4. $\sqrt{64}$
5. $\sqrt{196}$
6. $\sqrt{400}$

Evaluating Algebraic Expressions

Examples:

Evaluate the expression: $\begin{array}{rr} : \frac{2 x^{2} y}{x-y} & \text { when: } \begin{array}{l} x=5 \\ y \end{array}=1 \end{array}$	Evaluate the following expression if $\mathrm{a}=5, \mathrm{~b}=3$, and $\mathrm{c}=-2$. $2 c+3 b^{2}+2(a-c)$
$\underline{2} x^{2} y$	$2(-2)+3(3)^{2}+2(5-(-2))$
$x-y$	$2(-2)+3(9)+2(5+2)$
$\frac{2(5)^{2} \bullet 1}{5-1} \quad \begin{aligned} & \text { Substitute the given values for each } \\ & \text { variable. }\end{aligned}$	$\begin{aligned} & 2(-2)+3(9)+2(7) \\ & -4+27+14 \end{aligned}$
$\frac{2(25)(1)}{5-1} \quad$Evaluate the numerator first starting with the power (exponent.)	
$\frac{50}{5-1} \quad$ Finish the multiplication in the numerator	
$\frac{50}{4}$ Evaluate the denominator.	
25/2 or $12.5 \quad \begin{aligned} & \text { Simplify the fraction. This is the final } \\ & \text { answer. }\end{aligned}$	
Practice: 1. Evaluate $\frac{3 a+b^{2}}{2 c}$ when $\mathrm{a}=7, \mathrm{~b}=-3$, and $\mathrm{c}=-5$.	5. Evaluate $7(3 \mathrm{~b}-\mathrm{ac})$ when $\mathrm{a}=-2, \mathrm{~b}=3$ and $\mathrm{c}=5$.

Evaluate if $a=1, b=2, c=3$

2. $1 / 2(a+b+c)$
3. Evaluate $-a+c^{2}-b$ when $\mathrm{a}=3, \mathrm{~b}=-5$ and $c=\sqrt{4}$.
4. Evaluate $\frac{2 a-3 b}{\sqrt{c}}$ when $\mathrm{a}=-6, \mathrm{~b}=2$ and $\mathrm{c}=9$.
5. $|a-6 b|$
6. The formula to convert temperature from degrees Celsius to Fahrenheit is given by the formula ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \bullet \frac{9}{5}+32$
7. What is the value of $2(c+5)+2 c^{2}$ when $c=-1.2$?

If it is 17 degrees Celsius outside, what is the temperature in Fahrenheit?

Solving Equations

Examples:

$$
\begin{aligned}
&-3(x-6)+4(x+1)=7 x-10 \\
&-3 x+18+4 x+4=7 x-10 \\
& x+22=7 x-10 \\
&-7 x-22-7 x-22 \\
& \hline-6 x=-32 \\
&-6 x=-32 \\
& x=\frac{-32}{-6}=\frac{16}{3}
\end{aligned}
$$

$$
\begin{aligned}
& 4 x+9=2 x-6 \\
& \frac{-2 x}{2 x+9}=-\frac{-2 x}{} \\
& \frac{-9}{2 x}=-\frac{-9}{} \\
&=-15 \\
& \frac{2 x}{2}=\frac{-15}{2} \\
& x=-\frac{15}{2}
\end{aligned}
$$

Practice: Solve the equation

6. $7 x-2 x+7=-13$
7. $\quad x+7=-7$
8. $-\frac{3}{5} x=18$
9. $9+\frac{4}{3} x-\frac{2}{3} x=11$
10. $2 x-3=-23$
11. $10 x-8=27-5 x$
12. $6 x+5=-43$
13. $-2(3 y-7)=56$
14. $6(1-4 w)=-18$

Solving Inequalities

Solve the inequality and graph the result on a number line.

1. $-3 x+6 \leq-3$

Representing Relationships with Tables, Graphs, Equations and Words

1. Which graph best represents the line defined by the table of ordered pairs?

x	y
-1	4
0	2
1	0

A

C

D

2. Which equation matches the graph?
A. $y=3 x-2$
B. $y=-2 x+3$
C. $y=-\frac{1}{2} x+3$
D. $y=2 x+3$

3. Which table of values is represented by this rule?
"Three and four- tenths times a number, x, plus two is \boldsymbol{y}.
A.
B.
C.
D.

x	y
3	10.2
5	17.0

x	y
3	12.2
5	19.0

x	y
3	8.2
5	15.0

x	y
3	11.12
5	17.2

4. Susie is selling cookies at a bake sale. The graph below shows how many cookies she sells after each hour has passed. Which word sentence matches the graph?

Cookies

Sold

Hour
a. Susie started by selling 3 cookies and sold 1 additional cookie each hour
b. Susie started by selling 3 cookies and sold 2 additional cookies each hour
c. Susie started by selling 2 cookies and sold 2 additional cookies each hour
d. Susie started by selling 2 cookies and sold 3 additional cookies each hour

5. The school store sells t-shirts and sweatshirts each Friday.

- Sales totaled $\$ 565.00$ last Friday
- Let t represent t-shirts, which sold for $\$ 10$ each.
- Let w represent sweatshirts, which sold for $\$ 25$ each.

Write an equation to represent the total sales last Friday.
6. Use the table to answer questions a, b, and c.

x	-2	0	1	3
y	-7	-3	-1	3

a. Plot the ordered pairs in the table on the coordinate plane below.

b. Use words to describe the relationship found in the table.
c. Write an equation for the relation that includes the ordered pairs in the table.

Graphing a Linear Equation

Examples:

Practice:

1) $y=-\frac{2}{5} x+1$

2) $y=\frac{3}{5} x+2$

3) $y=-x$

